Today's Goal

Non-Ideal Solution

Azeotropes

Non-Ideal Solution

Definition

The solution which do not obey Raoult's law over the entire range of concentration are known as non ideal solutions.

There are two types of non ideal solutions

- Positive deviation 1.
- Negative deviation 2.

Properties of Positive deviation

- 1. $\Delta_{\min} H > 0$, $\Delta_{\min} V > 0$, $\Delta_{\min} P > 0$ 2. $\Delta_{\text{mix}} S > 0$, $\Delta_{\text{mix}} G < 0$
- 3. If the intermolecular attractive forces between the A-A and B-B are greater than those between A-B, this leads to the formation of positive deviation.
- 4. Examples –
- Ethanol + Acetone \bigcirc
- CS_2 + Acetone 0
- Ethanol + H_2O 0

Graph of Positive deviation

Properties of Negative Deviation

- 1. $\Delta_{\text{mix}} H < 0$, $\Delta_{\text{mix}} V < 0$, $\Delta_{\text{mix}} P < 0$ 2. $\Delta_{\min} S > 0$, $\Delta_{\min} G < 0$
- 3. If the intermolecular attractive forces between the A-A and B-B are lesser than those between A-B, this leads to the formation of negative deviation.
- 4. Examples –
- Phenol + Acetone \bigcirc Chloroform + Acetone 0 $HNO_3 + H_2O$ 0

Trick to find positive and negative deviation

- 1. $CCI_4 + \dots$
- 2. CHCl₃+.....
- 3. Acid + Water
- 4. Important example $CHCl_3 + Acetone$

Graph of Negative deviation

Azeotropes

Definition

- 1. Some liquids on mixing, from azeotropes which are binary mixtures having the same composition in liquid and vapour phase and boil at a constant temperature.
- 2. In such cases, it is not possible to separate the components by fractional distillation.
- 3. There are two types of azeotropes called minimum boiling azeotropes and maximum boiling azeotropes.

Types of Azeotropes

- 1. Solution which show a large positive deviation from Raoult's law form minimum boiling azeotropes.
- 2. The solutions that show large negative deviation from Raoult's law form maximum boiling azeotropes.

Q, Q.1 Which of the following liquid pairs shows a positive deviation from Raoult's law?

Acetone-Chloroform

Benzene-methanol

Water-nitric acid

Water-hydrochloric acid

2. Which of the following solutions can have boiling point less than that of both the individual components?

n-Hexane and n-Heptane

 HNO_3 and H_2O

 $HCI + H_2O$

C2H5OH and H₂O

Azeotropic mixture :

Are those which can be fractionally distilled

Have definite constant boiling point

Have same definite composition at any pressure

Are those which have different composition in liquid and vapour state

Select the mixture in which volume of solution is less than 2V . V mL on mixing V mL each of the two miscible liquids :

Benzene + Toulene

 $CHCl_3 + CH_3COCH_3$

Hexane + Pentane

Which of the following does not show negative deviation from Raoult's law ?

Chloroform-Acetone

Acetone-Benzene

Chloroform-Ether

Chloroform-Benzene

Which will form maximum boiling azeotrope ?

 $C_6H_6 + C_6H_5CH_3$ Solution

 $HNO_3 + H_2O$ solution

 $C_2H_5OH + H_2O$ solution

n-hexane and n-heptane

The azeotropic mixture of water $(B.P = 100^{\circ}C)$ and HCI $(B.P = 86^{\circ}C)$ boils at about 120°C. During fractional distillation of this mixture, it is possible to obtain :

Pure HCl

Pure H_2O

Pure H₂O as well as pure HCl

Neither H₂O nor HCl

Azeotropic mixture of water and HCI boils at 381.5 K. By distilling the mixture, it is possible to obtain:

Pure HCl only

Pure water only

Neither water nor HCl

Both water and HCl in pure state

An azeotropic mixture of two liquids has a boiling point higher than either of them when it:

Shows positive deviation from Raoult's law

Shows negative deviation from Raoult's law

Shows ideal behaviour

N.O.T.A

The boiling point of an azeotropic mixture of water-ethanol is less than that of both water and ethanol. Then :

The mixture will show negative deviation from Raoult's law

The mixture will show positive deviation from Raoult's law

The mixture will show no deviation from Raoult's law

This mixture cannot be considered as true solution

Total vapour pressure of mixture of 1 mol X (P°_x=150 torr) and 2 mol Y (P_{γ}° =300 torr) is 240 torr. In this case:

There is negative deviation from Raoult's law

There is positive deviation from Raoult's law

There is no deviation from Raoult's law

Can not be decided

In a mixture of A and B, components show positive deviation when :

A-B interaction is stronger than A-A and B-B interaction

A-B interaction is weaker than A-A and B-B interaction

 $\Delta V \text{ mix} < 0, \Delta S \text{ mix} > 0$

 $\Delta V \text{ mix} = 0, \Delta S \text{ mix} > 0$

A solution of acetone In ethanol :

Behaves like a near ideal solution

Obeys Raoult's law

Show a negative deviation from Raoult's law

Shows a positive deviation from Raoult's law

